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bstract

A model is presented, which can be used in the design of horizontal subsurface flow (HSF) constructed wetlands. This model was developed based
n experimental data from five pilot-scale CW units, used in conjunction with artificial neural networks. The CWs were operated for a two-year
eriod under four different hydraulic residence times (HRT). For the proper selection of the parameters entering the neural network, a principal
omponent analysis (PCA) was performed first. From the PCA and model results, it occurs that the main parameters affecting BOD removal are
orous media porosity, wastewater temperature and hydraulic residence time, and a set of other parameters which include the meteorological ones.
wo artificial neural networks (ANNs) were examined: the first included only the three main parameters selected from the PCA, and the second

ncluded, in addition, the meteorological parameters. The first ANN predicted BOD removal rather satisfactorily and the second one examined

esulted in even better predictions. From the predictions of the ANNs, a hyperbolic design equation, which combines zero and first order kinetics,
as produced to predict BOD removal. The results of the ANNs and of the model design equation were compared to available data from the

iterature, and showed a rather satisfactory correlation. COD removal was found to be strongly correlated to BOD removal. An equation for COD
emoval prediction was also produced.

2008 Elsevier B.V. All rights reserved.
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. Introduction and background

The use of constructed wetlands (CWs) in the treatment of a
ariety of wastewaters has grown rapidly since the mid 1980s.
everal advantages of CWs make them promising as a low cost
lternative for wastewater treatment. In conjunction with EU
irective 1991/271/EEC, which makes municipal wastewater
reatment imperative even for small towns, CWs are classified
s a key technology. The main characteristics, which affect the
emoval efficiency of CWs, are the hydraulic residence time and
emperature [1].

The effectiveness of CWs in removing organic matter, nitro-

en and phosphorus has been proved by several studies [e.g.,
–5]. Organic matter is removed in a horizontal subsurface flow
HSF) constructed wetland by bacteria attached to the porous
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edia and plant roots [6–9]. These bacteria remove organic com-
ounds with several mechanisms (i.e., respiration, fermentation
nd methanogenesis). Plant roots provide the necessary surfaces
or bacteria to grow and supply oxygen to them [10].

Until now, the majority of the models on constructed wet-
ands are focused on input–output data and the production of
ither linear regression equations or first order decay models
11]. Although, regression equations are very useful, they sim-
lify a complex system, such as constructed wetlands, into only
wo or three parameters, ignoring important factors such as
limate, porous media material and plant type [11]. The most
ommon type of models used in constructed wetland design are
he first order equations, which predict an exponential decay
etween inlet and outlet concentrations under constant condi-
ions of influent [11]. The main drawbacks of the first order

quations are that they assume an ideal and constant flow [11],
nd they do not take into consideration porous media, plant and
limate. Table 1 presents the main regression and first order
quations for predicting BOD removal in HSF CWs, as pre-
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Table 1
Main literature regression and first order equations for BOD/COD removal in CWs [11]

Regression equations

Reference Equation Influent range Effluent range q Range

[31] Cout = (0.11Cin) + 1.87 1 < Cin < 330 1 < Cout < 50 0.8 < q < 22
[32] Cout = 0.33Cin + 14 1 < Cin < 57 1 < Cout < 36 1.9 < q < 11.4
[33] Cout = 502.20e−0.111T 10 < T < 30 – –
[34] Cout = (0.099Cin) + 3.24 5.8 < Cin < 328 5.8 < Cout < 51 0.6 < q < 14.2
[26] Lremoved = (0.653Lin) + 0.292 4 < Lin < 145 4 < Lremoved < 88 –
[34] Lout = (0.145Lin) − 0.06 6 < Lin < 76 0.3 < Lout < 11 –
[34] Lout = (0.13Lin) + 0.27 2.6 < Lin < 99.6 0.32 < Lout < 21.7 0.6 < q < 14.2

First order equations

Reference Eq. (1) Eq. (2)

kA (m/d) kA,20 (m/d) θ kv (d−1) kv,20(d−1) θ

BOD5

[3] 1.104 1.06
[21] 0.17
[21] 0.22 1.06
[35] 1.84
[35] 1.35
[35] 0.86
[4] 0.085–1.000 0.3–6.11
[36] 0.49 1.0
[37] 0.86 1.1
[38] 0.118 ± 0.022
[39] 0.083
[40] 0.067 ± 0.1
[31] 0.16
[31] 0.068
[41] 0.133
[41] 0.07–0.31
[40] 0.06
[40] 0.31
[41] 0.17
[42] 0.86

COD
[5] 0.031 1.06

N ; Lin

k ◦C; q
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ote: Cin = influent concentration in mg/L; Cout = effluent concentration in mg/L
g/m2/d; Lremoved = removed surface loading rate in kg/m2/d; T = temperature in

ented by Rousseau et al. [11]. A common form of the first
rder equations is presented by [4]:

Cout

Cin
= e(−kA/q) (1)

here q is the hydraulic loading rate in m/d and kA the decom-
osition constant in m/d.

Another form of the first order equation, which uses the
ydraulic residence time (HRT) t in days, is presented by Eq.
2) [3]:

Cout

Cin
= e−kvt (2)

The temperature effect is expressed by the constant k (k or
T A

v), which is determined by the use of an Arrhenious equation,
s follows [4]:

T = k20θ
(T−20) (3)

i
a
fi
e

= influent surface loading rate in kg/m2/d; Lout = effluent surface loading rate in
= hydraulic surface loading rate in m3/m2/d.

here k20 (kA,20 or kv,20) is the value of kT at 20 оC. The k20
nd θ constants usually result from statistical analysis of the data
sed in the production of the model.

A critical step in model production is the selection of the
ariables, which can describe removal efficiency satisfactorily.
rincipal component analysis (PCA) is a multivariate linear tech-
ique useful in data reduction, which enables highly correlated
ariables to be reduced to a small number of orthogonal parame-
ers [12]. PCA can be applied to both continuous and categorical
ariables (“leveled” variables, like month etc.) [13]. In a geo-
etric metaphor of PCA, a cloud of data points (in this study,
OD removal values) in a space of N input variables is reori-
nted so that the first axis (i.e., the first “principal component”)
s along the longest dimension of the cloud (thereby explain-

ng most of the variance of the data cloud), the second axis is
long the second longest dimension that is perpendicular to the
rst axis, and so on. Then, the original N input variables are
xamined with respect to their projection on the new axes. Input



9 ginee

v
s
b
p
m
(
c
c
e
p

i
t
[
d
[
u
e
f
p
d
w
t
T
n
a
c
l
o

w
i
o
p
n
n
h
d
t
l
t
c
b
o
i
t
w
a
w
A
o
t
u
w
c
f
r

c
a
w
i
e
A
s
o
r
n
t
p
d
T
A
t

2

2

s
A
p
a
w
i
g
D
f
i
0
b
i
M
v
w
c
w
f
w
t
t
b
d
o
a
t
a
r
r

8 C.S. Akratos et al. / Chemical En

ariables with close projections on the new axis system are con-
idered to be correlated (in which case only one of them could
e used to model the data cloud), and variables with greatest
rojections along one of the new axes are considered to be the
ost strongly related to the corresponding principal component

only the variable with the greatest projection on a principal
omponent axis is used in the subsequent analysis). A typical
riterion for the number of principal components of a dataset is
xplanation of 75–95% of total variance of the dataset by the
rincipal components [14].

ANNs are a technique inspired by biological neuron process-
ng. They have a wide application field on several sciences for
ime series forecasting, pattern recognition and process control
15]. Their main advantage over traditional methods is that they
o not require the complex nature of the underlying process
15]. The principal drawback of ANNs is that they are typically
sed as a “black-box” approach, hiding the physics of the mod-
led process; in the present work, however, a model, inspired
rom the ANN response curves to the input parameters, is pro-
osed as an alternative to the ANNs. This model successfully
escribes their complex dynamics. There are many types of net-
orks for an ANN application and the selection of the proper

ype depends on the nature of the problem and data availability.
he multi-layer perception (MLP) is perhaps the most popular
etwork used in hydrological modeling [16,17]. In MLP, the
rtificial neurons, or processing units, are arranged in a layered
onfiguration containing an input layer, a processing (“hidden”)
ayer (in complex topologies two hidden layers are used) and an
utput layer.

A simple MLP was used in this work; it is a network
ith three input variables, a hidden layer with three process-

ng neurons, and a single-unit output (i.e., there is only one
utput variable in this network, BOD removal). For a sim-
le regression analysis the units in the input layer introduce
ormalized or filtered values of each input variable into the
etwork, then these values are transferred to all units of the
idden layer multiplied by a “weight” factor that is, in general,
ifferent for every connection, and its magnitude characterizes
he importance of some connection. The units of the hidden
ayer apply non-linear operators (“activation functions”) on
heir input, which offer to the ANN its non-linear modeling
apability, and the results of the non-linear operations are com-
ined (again with proper weights for every connection) to the
utput layer. This is a feed-forward scheme, but “recurrent”
nterconnections (where some unit in a layer returns its output
o an earlier layer) may also be used. Along with the net-
ork topology (i.e., number of layers and units in every layer,

ctivation functions of the units, interconnection scheme), the
eights of the connections are the design parameters of an
NN model. The weights are updated during the “training”
f the model: in the so-called “supervised learning” training,
he network output values are compared to desired output val-
es (like experimental results, here BOD removal), and the

eights are updated in a loop, until the network outputs are

lose enough to the desired output values. A classic algorithm
or the update of the weights is the “back-propagation” algo-
ithm.
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The aim of the present study is to examine whether artifi-
ial neural networks (ANNs) could be used in predicting BOD
nd COD removals in horizontal subsurface flow constructed
etlands, and if so, to suggest an appropriate topology (i.e.,

nput variables, number of ANN neurons, training algorithm,
tc.) for a successful ANN. The data used to train and test the
NN come from five pilot-scale horizontal subsurface flow con-

tructed wetlands receiving synthetic wastewater, which were
perated for two years in controlled experiments under Mediter-
anean climate conditions. To the authors’ knowledge, there are
o publications studying the applicability of ANNs in predicting
he performance of constructed wetlands. Another novelty of the
resent work is that the ANN results are used as an aid in the
evelopment of a design equation for BOD and COD removals.
he design equation proposed here is a tool complementary to
NN analysis, and it will be shown to be a simplifying form of

he first-order decay law.

. Materials and methods

.1. Pilot-scale unit description

Five similar pilot-scale horizontal subsurface flow con-
tructed wetlands have been constructed and are in operation.

detailed description of the experimental facility has been
resented by Akratos and Tsihrintzis [18]. Briefly, they are rect-
ngular tanks made of steel, with dimensions 3 m long, 0.75 m
ide and 1 m deep. Three different porous media were used,

.e., medium gravel (MG, D50 = 15.0 mm, range 4–25 mm), fine
ravel (FG, D50 = 6 mm, range 0.25–16.0 mm) and cobbles (CO,
50 = 90 mm, range 30–180 mm). The porous media were of dif-

erent origin. Medium gravel, which was obtained from a quarry,
s a carbonate rock (main elements: Si 3.39%; Al 0.90%; Fe
.82%; Ca 27.20%; Mg 4.53%; P 0.03%). Fine gravel and cob-
les were both obtained from a river bed in the area, and are
gneous rocks (Si 28.50%; Al 7.95%; Fe 4.22%; Ca 3.62%;

g 1.76%; P 0.11%). The rest of the rock mass consists of
arious trace elements in very small quantities. Two plants
ere used, namely common reed (R, Phragmites australis) and

attails (C, Typha latifolia). The plants were collected from
atercourses in the vicinity of the laboratory. Medium gravel

rom the quarry was used in three wetland units, one planted
ith common reed (MG-R) and one with cattail (MG-C); the

hird one was kept unplanted (MG-Z). The other two units con-
ained fine gravel (FG-R) and cobbles (CO-R) from the river
ed, both planted with common reed. Synthetic wastewater was
esigned and used to simulate to the best the characteristics
f domestic wastewater [18]. Inflowing concentrations of BOD
nd COD were approximately 300 mg/L and 600 mg/L, respec-
ively. The synthetic wastewater contained organic substances
nd a source of nitrogen, phosphorus and trace elements. The
ange of the flow was from 16 to 55 L/d in each unit, with four
esidence times, i.e., 6, 8, 14 and 20 days. The range of sur-

ace organic loading was: for BOD 2.6–8.8 g/d/m2, for COD
.2–14.3 g/d/m2, for ortho-phosphate (OP) 0.06–0.18 mg/d/m2

nd for TKN 0.46–1.60 mg/d/m2. The organic substances used
ere pepton (200 mg/L) which is the protein source, cane sugar



C
.S.A

kratos
etal./C

hem
icalE

ngineering
Journal143

(2008)
96–110

99

Table 2
Statistics of overall influent and effluent concentrations and removal efficiencies in each unit [18]

Influent concentration (mg/L) Effluent concentration (mg/L) Removal efficiency (%)

MG-C MG-R MG-Z FG-R CO-R MG-C MG-R MG-Z FG-R CO-R

BOD (mg/L) Mean 361.1 41.2 53.9 50.1 38.8 45.2 88.3 84.6 85.7 89.0 87.0
S.D. 47.4 33.1 37.6 34.3 26.9 36.3 10.3 11.6 10.5 8.5 11.6
Min 282.0 0.6 7.0 4.0 5.1 4.0 49.1 46.1 53.3 47.4 31.7
Max 507.0 170.0 190.0 140.0 169.0 200.0 99.8 98.2 98.9 98.4 98.9

COD (mg/L) Mean 583.6 62.5 87.9 74.9 61.0 76.6 89.3 84.9 87.2 89.5 86.7
S.D. 47.3 40.2 54.5 45.3 34.7 44.5 7.0 9.3 7.7 6.0 8.0
Min 500.0 0.0 0.0 0.0 0.0 4.8 66.1 55.9 61.7 67.5 59.9
Max 700.0 186.4 259.2 198.8 178.8 220.8 100.0 100.0 100.0 100.0 99.3

TKN (mg/L) Mean 64.0 21.1 28.9 42.6 11.2 16.7 66.8 54.8 34.2 82.5 74.1
S.D. 6.1 14.0 16.9 10.6 9.5 13.9 22.5 25.8 14.9 14.4 21.0
Min 50.4 0.3 3.9 21.6 0.8 4.2 16.7 −2.3 0.8 44.6 7.3
Max 77.0 53.2 75.9 65.5 37.8 64.9 99.4 92.8 70.5 98.8 94.2

N-NH3 (mg/L) Mean 38.4 17.1 24.3 38.3 7.5 10.8 53.6 36.2 −0.2 79.1 70.6
S.D. 3.6 13.2 15.6 9.2 9.0 11.7 35.1 40.2 22.4 25.1 31.5
Min 30.2 0.0 0.0 14.6 0.0 0.0 −20.3 −48.1 −63.8 0.0 −3.7
Max 46.2 51.8 56.0 56.8 34.7 43.4 100.0 100.0 60.3 100.0 100.0

N-(NO3
− + NO2

−)
(�g N/L)

Mean 279.2 248.4 60.7 28.4 12.0 22.9
S.D. 379.8 495.8 162.4 119.4 29.7 56.7
Min 0.0 0.0 0.0 0.0 0.0 0.0
Max 1510.8 2068.0 748.7 752.0 138.9 280.8

P–PO4
3− (mg/L) Mean 8.2 2.7 5.8 4.5 0.9 3.5 66.9 28.2 43.9 88.6 57.3

S.D. 1.0 2.7 2.5 1.5 1.4 2.5 33.8 30.7 19.1 17.7 30.4
Min 6.0 0.0 1.2 1.8 0.0 0.0 −16.7 −54.1 1.2 14.1 −8.3
Max 10.7 9.8 11.5 8.4 7.3 9.1 100.0 86.0 78.8 100.0 100.0

TP (mg/L) Mean 9.1 3.8 7.2 5.2 1.6 5.1 58.4 21.1 42.6 81.5 44.5
S.D. 1.0 3.4 2.8 1.5 2.1 2.8 36.3 29.2 17.0 24.0 29.1
Min 7.7 0.0 2.0 2.5 0.0 0.0 −48.4 −51.6 2.4 6.1 −12.9
Max 13.0 13.8 14.1 8.1 8.5 10.5 100.0 81.3 73.1 100.0 100.0

Number of Samples: 67 (54 for TP).
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200 mg/L) which is the source of saccharace, and acetic acid
50 mg/L) which is the source of organic acids. The source of
hosphorus was hydrogen potassium phosphate (K2HPO4), with
typical inlet concentration of 10 mg/L PO4

3−–P. The source
f nitrogen was urea with a typical inlet concentration 60 mg/L
H4

+–N. For the trace elements a fertilizer was chosen for use.
he typical inlet concentration of trace elements were: Mg+2

0 mg/L, Ca+2 20 mg/L, Fe+2 <1 mg/L and W+2 <0.1 mg/L. The
ynthetic wastewater was produced three times a day, every eight
ours, and was introduced immediately after mixing into the five
anks.

The data used in this paper come from the two-year operation
f the pilot-scale units described above. Pollutant concentrations
nd removal statistics are presented in Table 2 [18].

.2. PCA and neural networks software

All data analysis in this work was performed in StatSoft Sta-
istica version 7 [13]. For PCA and ANN analysis, a linear
ransformation (x′ = (x–μ)/σ) was applied to every variable in
he dataset, where x′ is the transformed data value and x is the
riginal data value, while μ and σ are the mean value and the
tandard deviation of the original data values, respectively. This
ransformation is called “soft scaling”, and delivers transformed
ariables with zero mean and unit standard deviation. Such a
ransformation is critical for variables with values spanning over
ifferent ranges, to ensure that all variables have common impor-
ance in PCA and ANN analysis, and that the activation functions
f the ANN units can operate on the input data, since several
f these functions have an input range between −1 and 1, or
etween 0 and 1.

A modern algorithm, NIPALS, was used for PCA; this
lgorithm is considered numerically more accurate than other
ethods [13]. NIPALS is an iterative algorithm, finding one

rincipal component at a time, by iterative regression of the pro-
ections of the original data points on the principal component
xis, until the axis with the best “loading factors” is determined.
he “loading factor” of some original variable with respect

o some principal component axis is the cosine of the angle
etween the original variable axis and the principal component
xis in the N-space of the original input variables; accord-
ngly, the loading factor measures the contribution of a variable
o a principal component. The “best” loading factors corre-
pond to the line that explains most of the original data cloud
ariability.

For data analyses performed on samples, a “validation” pro-
edure is required to ensure that the results of the analyses
re of general validity, i.e., they do not hold just on the sam-
les studied but on the entire population as well. A classic
pproach for validation is the division of the data to a “train-
ng” and a “validation” subset; analysis is performed on the
raining subset, and its results are checked in the validation
ubset. A different technique, namely cross-validation, is used

n this work, as it is considered more trust-worthy than the
lassic approach, and it does not require an unbiased division
f the original data to ensure that every subset of the data is
epresentative of the original dataset. For PCA, the v-fold cross-

i

m
f

ring Journal 143 (2008) 96–110

alidation was used: in this algorithm, data are divided into v
egments, with v − 1 segments used to determine the princi-
al axes and the last segment used for validation; the process
s repeated for every possible permutation of the training and
esting segments. PCA was performed with a 50-iteration max-
mum and a convergence criterion of 0.0001 for the iterative
IPALS algorithm, while v = 7 was used for the v-fold cross-
alidation.

For the ANN analysis, the choice today is usually between
ultiple layer perceptrons (MLPs) and Radial Basis Function

RBF) networks, which have a single hidden layer of radial
nits, with each unit modeling a Gaussian response surface.
BF networks have some advantages over MLPs, including

aster training and less danger to hit local minima during train-
ng (recall that ANN training is an iterative process; thereby, it
s possible for this process to stuck to some combination of the
NN weights that will give a local optimum for the ANN perfor-
ance, instead of the global one). On the other hand, more units

re typically required for the hidden layer of RBF networks as
ompared to MLPs [13]: this large number of units offers great
exibility to RBF networks, but exposes the analysis to the dan-
er of “over-fitting”. Over-fitting is one of the plagues of ANN
nalysis, and it could be described as a situation where too many
nits are used in an ANN, resulting to excellent performance of
he ANN on the training data and striking failure on any data not
sed in the training process. In this work, feed-forward MLPs
re used, with a single hidden layer, and a single output unit
BOD). To handle over-fitting, input data are split to three sub-
ets in a 2:1:1 ratio, with the larger subset used for training,
nd the remaining two subsets used for “testing” and valida-
ion. During the “testing” phase, which runs parallel to training,
he ANN delivered by training is applied to the testing subset,
hich does not participate in the training process: if the network

error” (i.e., the difference between the desired output and the
etwork output) keeps dropping in the training subset but not
n the testing subset, over-fitting is diagnosed and the training
rocess is halted.

Training of the ANNs in this work was performed in two
hases. During the first phase, the traditional back-propagation
lgorithm was run for 100 “epochs” (an epoch is one run of the
etwork for the data points of the training subset, followed by one
un for the data points in the testing subset to diagnose if over-
tting was present), with a “learning rate” of 0.01 (the learning
ate is a control parameter for the step size of the adjustment
f the network weights). Using another geometric metaphor for
his first phase of training, in each epoch the back-propagation
lgorithm calculated the direction of the steepest descent on the
rror surface of the network, and jumped down the surface a
istance proportional to the learning rate and the slope [13]. The
rst phase of training delivered an initial solution for the sec-
nd phase, which was a more sophisticated conjugate gradient
escent algorithm that ran for 500 epochs. This training method
s suggested to be very efficient [13], and it was found to be so

n the present work.

Concerning the activation function of the ANN units, a sig-
oid function is typically used in MLP networks. The reason

or this choice is that the sigmoid function is extremely flexi-
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le, combining nearly linear behavior, curvilinear behavior and
early constant behavior, depending on the input value. In this
ork, a hyperbolic tangent function (tan h) is used; this is a vari-

nt of the sigmoid function, which takes values between −1 and
instead of between 0 and 1 of the sigmoid, and it is evaluated

s

(x) = ex − e−x

ex + e−x
(4)

Furthermore, a linear combination of the hidden layer values
s used in the output unit; the alternative of using a sigmoid
ctivation function for this unit was not found to be necessary.

A Monte-Carlo technique was used for cross-validation of
he ANNs (that is, to ensure that the networks delivered will
orrespond to global, instead of local, minima of their error func-
ions). The results of the neural network analyses of the present
ork are ensembles of several ANNs, with each member of an

nsemble corresponding to a different and random split of the
nput data to 2:1:1 subsets, as mentioned above. The outputs of
he member networks of some ensemble are averaged to provide
final, composite network prediction. It can be shown that the
arious performance indices of such an ensemble are conserva-
ive, i.e., any performance index of such an ensemble will be a
worst case” value [13]. A number of 50 ANNs per ensemble
as found to be enough to guarantee cross-validation, and this is

he number of ensemble members used in this work. It is stressed
ere that although training of the ensembles will require much
ore time compared to a single ANN, their practical response
ill still be very fast.
Finally, the BOD and COD removals in this work was tackled

s a simple regression problem for ANN analysis, instead of a
ime series problem (which would result to more complex net-
orks, requiring additional input parameters to include history

nformation during both training and application of the mod-
ls). This decision was supported by the fast response of the
onstructed wetlands studied here to changes of the primary
nput variables that affect BOD removal (that is, temperature
nd hydraulic residence time).

. ANN for BOD removal

.1. BOD removal data

BOD (5-day value) removal is defined as:

BOD = Cin − Cout

Cin
(5)

A total of 812 data points for BOD removal were collected
nd used in the analysis. BOD removal data were collected for
ydraulic residence time (HRT) values of 6, 8, 14, and 20 days at
he outflow of the units; in addition to these, the data collected at
he 1/3 and 2/3 of the length of the units were also used, result-
ng in an HRT range of 2–days, thus covering most practical

pplications.

BOD removal efficiency over wastewater temperature is
hown in Fig. 1a for three HRT values, i.e., 6, 14, and 20 days.
ata from all units with the same HRT value were used. Rep-

(
s
d
I

ig. 1. (a) BOD removal efficiency chart over water temperature; (b) BOD
emoval efficiency chart over month.

esentative third degree polynomials are also shown in Fig. 1a,
ne polynomial for every HRT value. The data look coherent,
hat is, there is a certain functional dependence on wastewater
emperature for every HRT, with reasonably low scatter.

A phase shift is apparent between the fits for HRT = 14 days
operated from February 2004 to July 2004) and HRT = 20 days
operated from February 2005 to May 2005 and August 2005
o November 2005), which is explained in Fig. 1b, where BOD
emoval performance is depicted over month instead of tempera-
ure. This implies that wetland performance should not be tested
or temperature effect by graphing over temperature alone, but
easonal effects should also be considered. Month numbering
n Fig. 1b starts from the first month of Spring (which is March
n the present study; this is the month when stems and leaves
f the plants emerge), as this would provide a more universal
eference basis if the present data are compared to others of dif-
erent seasonality. This trick was also found to offer better ANN
odeling. There is a third degree polynomial shown in Fig. 1b

for HRT = 14 days), which is considered representative of the

easonal effect; accordingly, a sinusoidal function can be used to
escribe seasonal effects, as also suggested by Kadlec et al. [19].
t should be noticed that BOD removal peaks at summer start,
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ig. 2. Fitting surface of BOD removal over HRT and wastewater temperature.

eginning to drop afterwards (probably because of evapotran-
piration effects during the summer months, which concentrates
ffluents, and decrease of temperature in the fall) until it reaches
ts minimum at winter start. Seasonal effects are more intense
or lower HRT values, which implies a greater effect of tem-
erature on BOD removal for experiments with small HRTs; it
ill be shown in Section 4 below that this behavior is predicted
y the design equation for BOD removal that is proposed in the
resent work. Furthermore, there is much scatter for low HRT
alues, possibly because the wetlands do not have enough time
o smooth out large-scale disturbances (like intense rainfall) in
his case.

From Fig. 1a and b it is concluded that major factors affect-
ng BOD removal are HRT and wastewater inlet temperature;
his agrees with earlier studies [11]. To get a first idea on the
unctional dependence of BOD removal on HRT and wastewa-
er temperature, a fitting surface of all the 812 BOD removal
ata points of the present work was constructed in the 3D
pace over HRT and wastewater temperature, and is depicted
n Fig. 2. Distance-weighted least square fitting was used to
onstruct the surface (meaning that data points that are close
o some (X, Y) value combinations are used to create a local
econd-order regression polynomial, but with influence, i.e.,
eight, inversely proportional to their distance from the (X,
) values). Based on Fig. 2, HRT is identified as the most

mportant factor for BOD removal. There is a striking abrupt
ncrease of the performance with increasing HRT at low HRT
alues, which is most apparent at low temperatures. The per-
ormance appears to reach a “plateau” at HRT values around
–8 days (this limit depends on temperature), with a slight
ncrease towards 1 (100% BOD removal) for higher HRT val-
es.

As a first step towards PCA, cross-correlation coefficients
etween every variable that was considered a candidate for PCA

e.g., wastewater temperature, HRT, month, porosity, D50, plant
ype, porous material type, meteorological data, pH, conductiv-
ty and DO) were evaluated. The cross-correlation coefficients
ere calculated with the use of following Eq. (6) and the results

t
p
t
i

ring Journal 143 (2008) 96–110

re presented in Table 3:

=
∑N

i=1(xi − x̄)(yi − ȳ)√∑N
i=1(xi − x̄)2

√∑N
i=1(yi − ȳ)2

(6)

here xi and yi the parameter values and x̄ and ȳ the mean values
f the two parameters. Values of the cross-correlation coeffi-
ients range from −1 to +1, with −1 implying perfectly inversely
orrelated variables, 0 pointing to zero correlation between the
wo variables, and +1 implying perfectly correlated variables.
pparently −1 is equally important to +1 regarding the impor-

ance of some variable in PCA, thus the absolute value of the
ross-correlation coefficient is used in the following discussions.

In Table 3, D50 (i.e., the substrate material diameter that
orresponds to the 50% line on grain size curve) is divided
y the difference of maximum and minimum grain diameters
Dmax − Dmin); “porosity” refers to the porosity of the unit and
ot to that of the substrate alone, that is, it also includes the vol-
me occupied by plant roots; the variables labeled “Material”
nd “Plant” are “binned”, i.e., they get integer values different
or every material and plant, respectively (e.g., “Plant” is 0 for
he unplanted wetland, 1 for Typha and 2 for Phragmites) and
Material” is the porous media type (e.g., 1 for quarry material
nd 2 for river bed material). From the cross-correlation coeffi-
ients presented in Table 3 the variables correlated strongly to
emoval are HRT (absolute value of r = 0.55), month (absolute
alue of r = 0.30) and wastewater temperature (absolute value
f r = 0.32). These three are the wetland “operational parame-
ers.” For the other parameters, the r values are relatively low.
emperature and month have a relatively high cross-correlation
oefficient to each other (absolute value of r = 0.42). HRT has
elatively low cross-correlation coefficients with both tempera-
ure (absolute value of r = 0.08) and month (absolute value of
= 0.28), and is an independent parameter which can be used

n model construction. A group of four parameters is identi-
ed, i.e., porosity, D50/(Dmax − Dmin), material and plant called
wetland unit parameters”, with high absolute values of the
ross-correlation coefficients ranging from 0.50 to 0.93. These
arameters have a strong relation to each other, but show small
ependence on BOD removal (absolute values of the cross-
orrelation coefficients ranging between 0.02 and 0.07), so they
re not used in the construction of any model. “Meteorolog-
cal parameters” and “physicochemical parameters” (DO, pH
nd conductivity) present low absolute values of the cross-
orrelation coefficients with BOD removal ranging from 0.00 to
.12, and they were not tested in PCA. The conclusions drawn
rom the above analysis are confirmed by the following PCA.

.2. Principal components analysis

The results of PCA, that is, the “loading factors” of the can-
idate variables on the principal components axes (see Section
.2 for details) are reported in Table 4. The variables in this

able are the same as in Table 3. A number of three principal
arameters were found to explain nearly 83% of the variance in
he original dataset (this will be the number of the simple ANN
nput parameters in Section 3.3.1 below).
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Table 4
PCA results

Component 1 Component 2 Component 3

Month 0.013 −0.846 0.030
T −0.004 0.728 −0.525
HRT −0.006 0.492 0.829
Porosity −0.958 0.000 0.005
D50/(Dmax − Dmin) −0.947 −0.009 −0.003
Material type 0.969 0.007 0.003
Plant type 0.771 0.006 0.003

N
n
a

e
c
l
t
b
i
f
b
b
w
a

t
a
m
w
3
t
s
w

3

t
i
p
s
m
b

3

M
t
c
T
t
A
F
s
p

ote: Variance explained 82.9% in total (47.8%, 21.3% and 13.8% for compo-
ents 1, 2, and 3, respectively). The respective eigenvalues were: 3.348, 1.489
nd 0.964.

The first principal component is readily recognized as
xpressing the “wetland unit parameters” group identified in the
ross-correlation analysis above. All variables in this group have
arge loading factors on the first principal component, implying
hat any of them (with the possible exception of “Plant”) could
e used as input variable for the ANN. Of these variables, poros-
ty was selected as the ANN input, because it is the handiest one
or design and the more universal one (meaning that it could
e used at different studies with different plant/substrate com-
inations not limited to the plants and substrates of the present
ork). Of course, every possible alternate parameter was tested,

nd found not to change the ANN results.
Concerning the second principal component, both wastewater

emperature and month have large loading factors, but temper-
ture was selected as ANN input variable, because this is the
ost conventional choice; seasonal effects expressed by month
ere used as input to an alternate ANN, described in Section
.3.2 below. The third principal component is obviously related
o HRT. Accordingly, there will be three input variables to the
imple ANN that is presented in Section 3.3.1, namely porosity,
astewater temperature and HRT.

.3. Artificial neural network

Two ANNs are presented in this section. The first ANN has
hree input variables that were identified in the PCA above, and
t will be shown to perform reasonably well on the data of the
resent work. The second ANN is an alternative that includes
everal additional variables, in an effort to capture the effects of
eteorological parameters, like precipitation, which may also

e significant.

.3.1. ANN with three input variables
As described in Section 2.2 of this work, an ensemble of 50

LPs was trained for BOD removal over porosity, wastewa-
er temperature and HRT. All members of the ensemble share a
ommon topology, but they have different connection weights.
hree neurons were found to be adequate for the hidden layer of

he ANN. A member of the ensemble is depicted in Fig. 3a, and

NN predictions are compared to measured BOD removals in
ig. 3b for all the 812 BOD removal data points of this work (the
traight line corresponds to y = x, i.e., perfect agreement between
redicted and measured BOD removals). The wide range of
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ig. 3. (a) A member of the simple, 3-input-parameter ANN ensemble; (b)
nsemble predictions over measured BOD removal.

emovals (i.e., 0.3–1.0) is due to the wide range of HRTs used
i.e., 2–20 days). Although there is significant scatter around the
traight line (the regression coefficient is relatively low for the
ata in Fig. 3b, R2 = 0.52), the performance of the ANN is consid-
red reasonably good for design of constructed wetlands. There
re also some “outliers” (data points with exceptionally large dif-
erence between predicted and measured values) in Fig. 3b; most
f them correspond to low HRT values and extreme wastewater
emperatures (either very high, or very low temperature value),
hile some of the outliers also correspond to intense rainfall

vents.
The sensitivity analysis of the ANN response to changes of

he input parameters confirmed the conclusions drawn from the
tudy of the fitting surface in Fig. 2: ANN was found to be
ost sensitive to changes in HRT, while it was also sensitive to

hanges in wastewater temperature. The porosity of the wetland
ubstrate was found to be of lower importance for the ANN
redictions, at least for the porosities studied in the experiments
f the present work. However, these porosities are typical of such
ystems ranging from 28% to 37%.

A useful result of ANN analysis is the “response curve” of the
NN to each one of the input variables. To construct the response

urve for some input variable, the remaining input variables are
ssigned fixed typical values, and the network response to differ-
nt values of the variable at hand are evaluated and graphed over
he variable values. The response curve of the ANN discussed
ere with respect to HRT is shown in Fig. 4a. This ANN response
urve is considered important, as it has a hyperbolic shape and

ombines zero and first order kinetics. The use of hyperbolic
quations in describing the biological processes in wetlands has
een proposed by Mitchell and McNevin [20] as an alternative
o the most commonly used first-order decay law, and it is gain-

w
a
a

ig. 4. ANN response curves with respect to (a) HRT; (b) wastewater tempera-
ure.

ng acceptance thereafter. The response curve in Fig. 4a is fitted
y a hyperbolic equation HRT/(HRT + 2), which combines zero
nd first order kinetics, while the temperature can be fitted by
he function (T−1 + 1.1)−1, with T again standing for wastewater
emperature (Fig. 4b). The hyperbolic fits of Fig. 4 are shown in
ection 4 below to be relevant to the design equation for BOD
emoval, which is proposed in the present work as an alternative
o the ANNs.

The method that was used to construct the ANN response
urves can be used in pairs of ANN input variables as well, result-
ng to ANN response surfaces over combinations of two input
ariables. This is shown in Fig. 5 as the ANN response surface
ver HRT and wastewater temperature. This figure is compa-
able to Fig. 2 above, where a fitting surface of the raw BOD
emoval data over HRT and temperature is depicted. Compari-
on of the two figures confirms that the simple ANN presented
ere models BOD removal quite successfully.

.3.2. An alternative ANN with more input parameters

Several ANN alternatives to the simple one presented above

ere studied in this work. Of those ANNs, the one with Month
s an additional input variable to the three variables used
bove gave a slightly better agreement with experimental BOD
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Fig. 5. ANN response surface over HRT and wastewater temperature.

emovals, but it will not be presented here. Instead, a more com-
lex ANN with the three input variables used in the previous
ection (i.e., HRT, wastewater temperature, and porosity) and six
dditional variables (i.e., month, and the following five meteo-
ological variables: air humidity, barometric pressure, solar heat
ux, wind speed and rainfall depth) will be discussed here in
rief. The values of the meteorological parameters used here
re averages over a time period of HRT days before measure-
ent (e.g., for an HRT of 6 days, a 6-day average was used).
ven though the meteorological parameters did not show a high
ross-correlation with BOD removal (Table 3), the purpose of
his ANN was to explore the possibility of improving (even
lightly) modeling of the BOD removal process by inclusion
f seasonal effects and large-scale hydrologic processes (that is,
actors influencing evapotranspiration and precipitation).

In accordance to the network design principles of Section
.2, an ensemble of 50 MLPs was trained over the experimental
OD removal values and the corresponding values of the 9 input
ariables. A number of six neurons in the hidden layer of the
NNs were found to be adequate in this case. Most of the results

or this ensemble are similar to those for the simple network
escribed earlier. ANN response was again found to be most
ensitive on HRT and temperature changes; among the additional
arameters of the new ANN, solar heat flux was found to be
he more influential one (at high removal rates), and the ANN
esponse curve with respect to this variable is shown in Fig. 6a,
hile the BOD removal predictions of the ANN are compared

o measured BOD removal.
From the ANN response to solar heat flux, it is clear that

OD removal decreases with increasing evapotranspiration, as
ncreased solar heat flux is related to increased evapotranspira-
ion. Concerning the ANN performance, a comparison to Fig. 3b,
here the predictions of the simple ANN are depicted, indicates

mproved modeling by the complex ANN. Although the regres-

ion coefficient for Fig. 6b (R2 = 0.68) is again relatively low,
t is higher than that for Fig. 3b (R2 = 0.52) and the number of
utliers for the complex ANN is clearly reduced. Therefore, it
an be concluded that there is space for improvement of BOD

i
a
v
e

ig. 6. (a) ANN response curve with respect to solar heat flux (W/m2); (b) ANN
redictions over measured BOD removals.

emoval modeling by ANNs, if evapotranspiration is modeled
nd included together with precipitation and seasonal effects in
he ANN input variables.

.4. ANN validation

In an effort to test the ANN performance against other avail-
ble data, a compilation of published BOD removal data was
ndertaken and is presented here; obviously, only the simple
NN can be tested, as there are no publications reporting the

arge number of input parameters of the complex ANN. Even
o, several assumptions were required during the interpretation
f the data. The data sources are presented in Table 5, along with
he type of wetlands (which are all constructed wetlands of hori-
ontal subsurface flow, but have various setups and treat different
ypes of wastewater) and ranges of the inlet BOD, wastewater
emperature, HRT and porosity for every data source.

All data reported in the data sources were used (82 data points

n total). The data from Tanner et al. [21] include CBOD5 values,
s only these values were available. Mean annual temperature
alues were used for the data from Tanner et al. [21] and Ciria
t al. [22], while a typical temperature of 15 ◦C was used for the
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Table 5
Validation data description

Reference Wetland use BODin (mg/L) Removal (%) Temperature (◦C) HRT (d) Porosity

[21] Dairy farm wastewaters 57 60–92 15 2 0.37
[28] Units downstream from stabilization

ponds receiving domestic wastewater
25–100 72–82 25.5 6–12.5 0.40

[22] Municipal raw wastewater 340–485 83–97 13.5 4.7 0.33
[23] 2.3:1 mixture of dairy parlor effluent and

domestic sewage
451 89–94 15 10 0.30 and 0.33

[27] Single household domestic wastewater 73–562 55–85 7–30 3.7–6.7 0.38 and 0.40
[24] Primary settled municipal wastewater 113.7 – 131.1 54–94 15 1.7–16.1 0.40
[25] 14 systems treating municipal, industrial,

domestic and hospital wastewaters
5–51 20–92 15 0.7–5 0.40

[8] 21 single-family domestic effluent
systems

10.3–193.3

[28] Pretreated swine effluent 343–411
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Fig. 7. ANN validation against BOD removal data from other studies.

ata from Mantovi et al. [23] (Region Emilia, Italy), Headley et
l. [24] (South Wales, Australia) and US EPA [25] (Los Ange-
es). Wetland porosities were judged based on the typical size of
he material used as the wetland substrate, according to Reed et
l. [26], for the data from Ciria et al. [22], Mantovi et al. [23],
arathanasis et al. [27], Steer et al. [8] and Lee et al. [28], while a

ypical porosity of 0.40 was used for the data from US EPA [25].
nlet BOD5 values were estimated from the wetland loading for
he data from Senzia et al. [29] and Karathanasis et al. [27].
RT values were estimated from the Hydraulic Loading Rate

HLR) for the data from Senzia et al. [29], and from the inlet
ow rate and wetland dimensions for the data from Karathanasis
t al. [27] and Steer et al. [8], with the inlet flow rate in the lat-
er case estimated as 0.285 m3/d/p.e., like in Karathanasis et al.
27]. Furthermore, both the BOD removal data and the values of
he ANN input parameters in all data sources are averages over
xtended time periods, typically characterized by large standard
eviations.

The ANN predictions are compared to the reported BOD

emovals in Fig. 7. Considering the gross assumptions made
uring the data compilation, the performance of the model is
onsidered reasonably good (R2 = 0.25). A linear regression
quation was also fitted through the data of Fig. 7 (y = 1.0173x);

e
c
a
i

27–95 13 4.34–30.36 0.38

86–92 22–25 4.3–14.7 0.37

ts slope shows that the ANN slightly underestimates the mea-
ured data. There are two obvious outliers in Fig. 7, both of which
orrespond to units with exceptionally low influent BOD values,
amely, US EPA [25] “Degussa” unit with inlet BOD = 5 mg/L
nd Steer et al. [8] “System 1” unit with inlet BOD = 10.3 mg/L.
s reported in Table 5, these two inlet BOD values are the lower
alues in the entire dataset, and are in the range where BOD
roduction within the wetland becomes important. It is known
hat ANNs in general cannot extrapolate outside the data range
sed for their training. The inlet BOD concentrations of the
resent work ranged from 282 to 507 mg/L, and HRTs ranged
rom 2 to 20 days. The network, however, performed well on
ata with inlet BOD concentrations as low as 20 mg/L, and with
RT values of 1 day; it was also able to handle units treating

everal types of wastes, although it was trained by data for syn-
hetic wastewater. Further study of the applicability limits of the
imple ANN presented in this section requires more data from
ontrolled BOD removal experimental studies, particularly in
eal operating systems, but the results of the present work appear
ery promising.

. A design equation for BOD removal

As mentioned before, the most commonly used equation (Eq.
2)) for BOD removal in subsurface flow constructed wetlands is
he first-order equation. According to this approach, the hydro-
ynamic operation of the wetlands resembles that of plug-flow
eactors (PFR), and there is a first-order decay of organic matter
ith time. Using the BOD removal definition from Eq. (5), Eq.

2) becomes:

− R = e−kνt (7)

The rate constant at some temperature is estimated by an
rrhenius relationship (Eq. (3)). A designer wishing to evaluate
RT for some unit that will result to a BOD removal RBOD is

hen faced with two constants with possible values spanning over

xtended ranges. The number of constants raises to three if the
oncept of “background concentration” C* is used [4]. This is
portion of the Cin that is immediately settled down at the unit

nlet, and cannot be removed; it is of the order 10–20 mg/L, and
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s included in the formulation above by subtracting it from both
he nominator and the denominator of the left hand side of Eq.
2).

Cout − C∗

Cin − C∗ = e−kvt (8)

An alternative to the first-order decay equation is the “Tanks-
n-Series” model that predicts BOD removal based on the
ollowing equation [19]:

− R ≡ Cout

Cin
= 1

(1 + kv · HRT/N)N
(9)

here kv is again the volumetric rate given by Eq. (2), and N is
he number of continuous stirred tank reactors (CSTR) in series,
hose composite hydrodynamic behavior resembles that of the
etland. That is, this model considers a series of CSTR as more

uitable than a PFR to describe the hydrodynamic behavior of a
etland. This approach is typically used for large-scale complex
etlands with non-trivial residence time distributions.
As shown in Table 1 of this work, typical values for k20 and θ

n Eq. (7) are 1.104 d−1 and 1.06, respectively [25]. The predic-
ions of the first-order decay model for the data of the present
ork were evaluated from Eqs. (2) and (8) above for these values
f k20 and θ, and are checked against measured BOD removals
n Fig. 8. It is obvious that the first-order model with these
ypical values of k20 and θ (Fig. 8a) overpredicts the present
ata (y = 0.8x, R2 = 0.33). A fitting procedure suggests that k20
hould be set to 0.88 d−1 (which is within the range of the values
eported for this parameter in Table 1), θ should be set to 1.07
nd C* to 75.48 mg/L (Fig. 8b). The agreement with measured
OD removal becomes better but it is still not satisfactory (y = x,
2 = 0.34). Furthermore, the C* value is very high. The perfor-
ance of the first-order model does not become much better
hen trying different values for θ. The limitations of the first-
rder model become apparent at this point. Besides, the fitting
rocedure, even if successful, would not shed too much light to
he operation dynamics of the wetlands.

A design equation for BOD removal is proposed then in this
ork, as an alternative to the first-order model, whose short-

omings became obvious above. This equation, which follows,
s based on the ANN response curves for HRT and temperature
resented in Section 3.3.1:

BOD = HRT

K + HRT
(10)

here K has units of time (d), and is given by K = c/T with c
d ◦C) a constant and T the wastewater temperature. The param-
ter K of Eq. (10) represents a time scale of the degradation
rocess of organic matter. For the data of this work, and K and
RT expressed in days, a fitting procedure resulted to a value of
2.8 d ◦C for constant c. Thus:

BOD = HRT
(11)
(22.8/T ) + HRT

The hyperbolic equation above is based on HRT, as this is
onsidered most handy for design of wetlands. It will be shown
elow that Eq. (10) is an approximation of the first-order model,

p
a

m

f the present work.

hereby carrying the theoretical validity of this model, but also
aving a balance in the denominator of Eq. (10) between the
egradation time scale K and HRT, with the former becoming
ritical for low HRT and losing importance for high HRT values
as seen in Figs. 2 and 5). Therefore, Eq. (11) describes more
ccurately, compared to the first-order model, BOD removal at
ow and a wider range of HRT values.

A fitting surface of the predictions of Eq. (11) for the BOD
emoval data of this work over HRT and wastewater tempera-
ure is shown in Fig. 9a. This figure is comparable to Fig. 2. A
omparison of the two figures indicates that the design equation
roposed here does capture the complex interplay between HRT
nd temperature for the BOD removal process. The predictions
f Eq. (11) for the BOD removal data of this work are depicted
n Fig. 9b against measured values (once again, the straight line
n Fig. 9b is the “perfect agreement line” y = x, R2 = 0.44). The
erformance of the design equation is similar to that of the sim-
le ANN shown in Fig. 3b, and the discussion presented there
pplies here as well.
To express Eq. (10) as an approximation of the first-order
odel, the following classic equality of mathematics for the
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ig. 9. (a) Fitting surface of BOD removal predictions of Eq. (11) for the data
f this work over HRT and wastewater temperature; (b) predictions of Eq. (11)
ver measured BOD removal.

xponential function is used:

xp(x) = 1 + x + x2

2!
+ x3

3!
+ . . . + xn

n!
(12)

Keeping only the first two terms of the right hand side of Eq.
12) and applying it to Eq. (7) one gets:

− RBOD = 1

1 + kv × HRT
(13)

Interestingly, this result is the one given from Eq. (9) above
s well, for the simpler case of the Tanks-in-Series model with
= 1. Eq. (13) can also result to a form similar to Eq. (10):

BOD = 1 − 1

1 + kv × HRT
= 1 + kv × HRT − 1

1 + kv × HRT

= kv × HRT

1 + kv × HRT
= HRT

(1/kv) + HRT
(14)
Accordingly, the parameter K in the design Eq. (10) is recog-
ized here as an approximation for 1/kv, with kv the volumetric
ate constant of the degradation process given by Eq. (2) above.

u
i

p

ig. 10. Validation of the design equation for BOD removal against data from
ther studies.

he design equation proposed in this work is then a simple and
ore flexible, single-constant variant of the first-order model

or BOD removal (the flexibility of the equation stems from
he narrow range of possible values anticipated for the equa-
ion constant). The reason for the success of this approximating
xpression should probably be looked for at the smoothing that is
nherent to biological processes, as compared to chemical reac-
ors: this smoothing could drop out the higher order terms of the
xponential decay.

Another feature of the design equation proposed here, that
ould be convenient in practical applications, is that the equation
an be linearized. If both sides of Eq. (10) are inversed, one gets:

1

RBOD
= K

HRT
+ 1 = c

T × HRT
+ 1 (15)

nd the equation above could be used for estimation of c or for
alidity tests of the design equation, provided that experimental
ata for RBOD, spanning a reasonably wide range, are available
obviously, Eq. (15) should not be used if all the data for RBOD
re in a narrow range, e.g., between 0.9 and 1.0).

The design equation (with the constant c = 22.8) is compared
n Fig. 10 against the published dataset for BOD removal com-
iled in Section 3.4. Again, the straight line in this figure is
efined by y = x. The performance of the equation is similar to
hat of the simple ANN of this work depicted in Fig. 7, and it is
onsidered reasonably good for design purposes. The two out-
iers already mentioned in the discussion of Fig. 7 also appear in
ig. 10. Furthermore, low HRT values impose another limit to

he applicability range of Eq. (11). There is a group of three units
rom US EPA [25], namely Mandeville, Greenleaves, and Mon-
erey, that correspond to both low BODin values (41, 36, and
9 mg/L, respectively) and low HRT values (0.7, 1.0, and 0.9
ays, respectively) for which Eq. (7) was shown to underpredict
OD removal. It is concluded that use of the design equation
roposed here is not recommended for systems with BODin val-

es lower than 50 mg/L, especially when the HRT of the units
s lower than 2 days.

On the high side of the BODin scale, Eq. (11) predicts the
erformance of the heavy-loaded units reported by Lee et al.
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ig. 11. (a) Correlation between measured BOD and COD removal; (b) predic-
ions of the design equation proposed in this work for COD removal.

28] very well. Although the present work does not distinguish
etween physical and microbial processes for BOD removal, Lee
t al. [28] found the majority of BOD removal in their heavy-
oaded units to be attributed to physical processes. It is then
ossible that the design equation proposed here (and the simple
NN of Section 3.3.1 as well) can predict BOD removal by both
hysical and microbial processes.

. COD removal

The two parameters that express the removal of organic matter
n constructed wetlands, i.e., BOD and COD, are widely consid-
red to be correlated with equation COD = 1.8BOD [30]. For this
eason, most researchers consider only one of these parameters
n their studies. This is confirmed to be the case in the present
ork as well. Measured BOD removals are depicted against the

orresponding measured COD removals in Fig. 11a (812 data
oints), with different symbols corresponding to different units

nd HRT values. A linear fit is drawn, in addition to the stan-
ard y = x line (see for example Tanner et al. [21] for a similar
orrelation between COD and BOD), which has the following
ring Journal 143 (2008) 96–110 109

quation:

COD = 0.56 RBOD + 0.39 (16)

Given the correlation above (R2 = 0.69), COD removal could
e predicted either by retraining the ANNs with COD removal
ata, or by modifying Eq. (11) for COD removal predic-
ion, or even by applying the correlation between BOD and
OD removal to the predictions of BOD removal. All these
pproaches gave results similar to each other and to the BOD
emoval predictions reported earlier in this work. Therefore, only
he predictions of an equation similar to Eq. (10) are presented
ere in Fig. 11b (with the straight line again defined by y = x). A
alue of c = 15.0 was found to be the best for COD removal:

COD = HRT

(15.0/T ) + HRT
(17)

The performance of this design equation appears to be rea-
onably good for COD removal, in spite of the low regression
oefficient (R2 = 0.44, like in every similar graph of this work).
n particular, the number of outliers is considerably reduced in
ig. 11b.

. Conclusions

Artificial neural networks have been shown in this work to be
ble to model the BOD removal process in horizontal subsurface
ow constructed wetlands. Topologies of successful networks
ere suggested, and the network predictions were validated

gainst an extended dataset reported here and a separate dataset
ompiled from studies published earlier. The performance of the
etworks was found to be reasonably good for wetland design
urposes.

Based on the results of the artificial neural network modeling,
single-constant design equation was proposed here as a simple
nd flexible alternative to the first-order model commonly used
or BOD removal prediction. The design equation was found to
redict both datasets examined in this work reasonably well, and
t was shown to be a hyberbolic mathematical approximation of
he first-order model.

The COD removal in horizontal subsurface flow constructed
etlands was shown to be strongly correlated to the BOD

emoval, and to be predicted with adequate accuracy by both the
eural networks studied here and the design equation proposed
n this work.
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